Pro-` Galois Theory of Zariski Prime Divisors

نویسندگان

  • Florian Pop
  • FLORIAN POP
چکیده

— In this paper we show how to recover a special class of valuations (which generalize in a natural way the Zariski prime divisors) of function fields from the Galois theory of the functions fields in discussion. These valuations play a central role in the birational anabelian geometry and related questions. Résumé (Théorie de Galois pro-` des diviseurs premiers de Zariski) Dans cet article nous montrons comment retrouver une classe spéciale de valuations de corps de fonctions (qui généralisent naturellement les diviseurs premiers de Zariski) à partir de la théorie de Galois des corps de fonctions en question. Ces valuations jouent un rôle central en géométrie anabélienne birationnelle et pour d’autres questions connexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pro-` Abelian-by-central Galois Theory of Zariski Prime Divisors

In the present paper I show that one can recover much of the inertia structure of Zariski (quasi) divisors of a function field K|k over an algebraically closed base field k from the maximal pro-` abelian-by-central Galois theory of K. The results play a central role in the birational anabelian geometry and related questions.

متن کامل

Pro-` Abelian-by-central Galois Theory of Prime Divisors

In the present paper I show that one can recover much of the inertia structure of (quasi) divisors of a function field K|k over an algebraically closed base field k from the maximal pro-` abelian-by-central Galois theory of K. The results play a central role in the birational anabelian geometry and related questions.

متن کامل

Z/` abelian-by-central Galois theory of prime divisors

In this manuscript I show how to recover some of the inertia structure of (quasi) divisors of a function field K|k over an algebraically closed base field k from its maximal mod ` abelian-by-central Galois theory of K, provided td(K|k) > 1. This is a first technical step in trying to extend Bogomolov’s birational anabelian program beyond the full pro-` situation, which corresponds to the limit ...

متن کامل

Nilpotent Extensions of Number Fields with Bounded Ramification

We study a variant of the inverse problem of Galois theory and Abhyankar’s conjecture. If p is an odd rational prime and G is a finite p-group generated by s elements, s minimal, does there exist a normal extension L/Q such that Gal (L/Q) ∼= G with at most s rational primes that ramify in L? Given a nilpotent group of odd order G with s generators, we obtain a Galois extension L/Q with precisel...

متن کامل

Galois Modules, Ideal Class Groups and Cubic Structures

We establish a connection between the theory of cyclotomic ideal class groups and the theory of “geometric” Galois modules and obtain results on the Galois module structure of coherent cohomology groups of Galois covers of varieties over Z. In particular, we show that an invariant that measures the obstruction to the existence of a virtual normal integral basis for the coherent cohomology of su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006